首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1128篇
  免费   78篇
  2023年   2篇
  2022年   3篇
  2021年   13篇
  2020年   4篇
  2019年   9篇
  2018年   19篇
  2017年   16篇
  2016年   28篇
  2015年   41篇
  2014年   40篇
  2013年   59篇
  2012年   85篇
  2011年   66篇
  2010年   40篇
  2009年   42篇
  2008年   95篇
  2007年   61篇
  2006年   59篇
  2005年   85篇
  2004年   77篇
  2003年   90篇
  2002年   55篇
  2001年   14篇
  2000年   22篇
  1999年   19篇
  1998年   14篇
  1997年   13篇
  1996年   7篇
  1995年   11篇
  1994年   12篇
  1993年   4篇
  1992年   15篇
  1991年   9篇
  1990年   9篇
  1989年   6篇
  1988年   11篇
  1987年   4篇
  1986年   3篇
  1985年   4篇
  1984年   6篇
  1983年   5篇
  1982年   7篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1978年   4篇
  1977年   1篇
  1973年   1篇
  1972年   4篇
  1971年   3篇
排序方式: 共有1206条查询结果,搜索用时 31 毫秒
101.
We conducted a phenotypic cDNA screening using a T cell line-based assay to identify human genes that render cells resistant to human immunodeficiency virus type 1 (HIV-1). We isolated potential HIV-1 resistance genes, including the carboxy terminal domain (CTD) of bromodomain-containing protein 4 (Brd4). Expression of GFP-Brd4-CTD was tolerated in MT-4 and Jurkat cells in which HIV-1 replication was markedly inhibited. We provide direct experimental data demonstrating that Brd4-CTD serves as a specific inhibitor of HIV-1 replication in T cells. Our method is a powerful tool for the identification of host factors that regulate HIV-1 replication in T cells.  相似文献   
102.
Tubular-interstitial injury plays a key role in the progression of chronic kidney disease. Although endoplasmic reticulum (ER) stress plays significant roles in the development of chronic diseases such as neurodegenerative disease, cardiomyopathy and diabetes mellitus, its pathophysiological role in chronic renal tubular cell injury remains unknown. BiP is an essential chaperone molecule that helps with proper protein folding in the ER. Recently, we have produced a knock-in mouse that expresses a mutant-BiP in which the retrieval sequence to the ER is deleted in order to elucidate physiological processes that are sensitive to ER functions in adulthood. The heterozygous mutant-BiP mice showed significant tubular-interstitial lesions with aging. Furthermore, proteinuria induced by chronic protein overload accelerated the tubular-interstitial lesions in the mutant mice, accompanying caspase-12 activation and tubular cell apoptosis. These results suggest that the ER stress pathway is significantly involved in the pathophysiology of chronic renal tubular-interstitial injury in vivo.  相似文献   
103.
Biofuel cell system employing thermostable glucose dehydrogenase   总被引:1,自引:0,他引:1  
Enzyme biofuel cells utilizing glucose dehydrogenase as an anode enzyme were constructed. The glucose dehydrogenase is composed of a catalytic subunit, an electron transfer subunit, and a chaperon-like subunit. Cells, constructed using either a glucose dehydrogenase catalytic subunit or a glucose dehydrogenase complex, displayed power outputs that were dependent on the glucose concentration. The catalytic subunit in the anode maintained its catalytic activity for 24 h of operation. The biofuel cell which composed of glucose dehydrogenase complex functioned successfully even in the absence of an electron mediator at the anode cell. These results indicate the potential application of this thermostable glucose dehydrogenase for the construction of a compartment-less biofuel cell.  相似文献   
104.
Vasopressin was reported to stimulate secretion of both cortisol and aldosterone through eutopic V1a receptors in adrenal gland. Recently, adrenal hyper-responsiveness of plasma cortisol to vasopressin with eutopic overexpession of V1a receptors has been reported in Cushing's syndrome, such as a majority of cases of ACTH-independent macronodular adrenal hyperplasia and some cases of Cushing's adenomas. There were a few reports regarding the aldosterone response to vasopressin in aldosterone-producing adenoma. The aim of our study was to investigate the aldosterone response to vasopressin and its pathophysiological roles in the patients with aldosterone-producing adenoma. Vasopressin-loading test was performed in 10 patients with aldosterone-producing adenoma, and in 16 patients with non-functioning adrenal tumors. The roles of the aldosterone response to vasopressin were analyzed in terms of hormonal secretion and the expression of V1a receptor mRNA on the operated adrenal gland in aldosterone-producing adenoma. We found that (1) a varying aldosterone response to vasopressin was observed, (2) absolute response of plasma aldosterone in aldosterone-producing adenoma was significantly higher than that in non-functioning tumor, (3) aldosterone response rate to vasopressin was significantly and negatively correlated with the decline rate (%) in plasma aldosterone from morning to evening in aldosterone-producing adenoma, (4) V1a receptor mRNA was expressed at various values in aldosterone-producing adenoma, and (5) surgical removal of aldosterone-producing adenoma eliminated the aldosterone response to vasopressin observed in patients with aldosterone-producing adenoma. These findings indicated that vasopressin might be involved in the coordination of aldosterone secretion through eutopic expression of V1a receptor in aldosterone-producing adenoma.  相似文献   
105.
Human vascular endothelial cells form the interface between the bloodstream and vessel walls and are continuously subjected to mechanical stimulation. When endothelial cells are stretched cyclically, along one axis, they align perpendicular to the axis of stretch. We previously reported that applying a cyclic, uni-axial strain to cells induced tyrosine phosphorylation of focal adhesion kinase and stimulated mitogen-activated protein kinase. However, it is difficult to quantify and analyze the spatial distribution of tyrosine phosphorylation in these cells, as they form focal adhesions randomly. In this study, we developed a system to overcome this problem by preparing individual, uniform, patterned cells that could be stretched cyclically and uni-axially. We constructed polydimethylsiloxane stretch chambers and used microcontact printing technology to imprint a pattern of 2 microm fibronectin dots (10 lines x 10 columns in a 38 microm square) before seeding them with human umbilical vein endothelial cells (HUVEC). We found that most HUVEC attached to the patterned dots after 2h and were similar in size and morphology, based on phase-contrast microscopy. In this system we were able to statistically analyze tyrosine phosphorylation and actin polymerization in these patterned cells, when subjected to a cyclic, uni-axial strain, using fluorescent microscopy.  相似文献   
106.
Elevation of the intracellular cAMP level induces morphological changes of astrocyte-like differentiation in C6 glioma cells. Such changes may be accompanied with expression of cytoskeletal protein genes. We therefore analyzed morphological changes after a treatment with dibutyryl cAMP (dbcAMP) and then assessed the expression of cytoskeletal protein genes by a quantitative real-time polymerase chain reaction. The cell number remained unaltered upon incubation with 1 mM dbcAMP in medium supplemented with 0.1% fetal bovine serum (FBS), whereas the number and lengths of processes increased, when compared with those of cells incubated in medium supplemented with 0.1% or 10% FBS only. The amounts of β-actin, γ-actin, and β-tubulin mRNAs in C6 cells, but not α-tubulin mRNA, increased during the early proliferation in DMEM containing 10% FBS. The expression of cytoskeletal protein genes decreased when incubated with 0.1% FBS or 1 mM dbcAMP in 0.1% FBS, compared with those of cells cultured in 10% FBS. These results indicated that, during the early proliferation in normal culture condition, the expression of cytoskeletal protein genes in C6 cells, except α-tubulin, increased, while in differentiating or differentiated C6 glioma cells, cAMP-induced morphological changes were not accompanied with elevation of gene expression for cytoskeletal proteins, such as actin and tubulin.  相似文献   
107.
As a result of the various N-bicyclo-5-chloro-1H-indole-2-carboxamide derivatives with a hydroxy moiety synthesized in an effort to discover novel glycogen phosphorylase (GP) inhibitors, 5-chloro-N-(5-hydroxy-5,6,7,8-tetrahydronaphthalen-2-yl)-1H-indole-2-carboxamide (5b) was found to have potent inhibitory activity. The introduction of fluorine atoms both at a position adjacent to the hydroxy group and in the central benzene moiety lead to the optically active derivative 5-chloro-N-[(5R)-1,3,6,6-tetrafluoro-5-hydroxy-5,6,7,8-tetrahydronaphthalen-2-yl]-1H-indole-2-carboxamide (25e(alpha), which was the most potent compound in this series (IC(50)=0.020microM). This compound inhibited glucagon-induced glucose output in cultured primary hepatocytes with an IC(50) value of 0.69microM, and showed oral hypoglycemic activity in diabetic db/db mice at 10mg/kg. Compound 25e(alpha) also had an excellent pharmacokinetic profile, with high oral bioavailability and a long plasma half-life, in male SD rats. The binding mode of 25e(alpha) to this molecule and the role of fluorine atoms in that binding were speculated in an enzyme docking study.  相似文献   
108.
PtdIns(3, 4, 5)P(3)-dependent Rac exchanger (P-Rex) 1 is a guanine nucleotide exchange factor (GEF) for the small GTPase Rac. P-Rex1 is activated by G protein betagamma subunits (Gbetagamma), and the Gbetagamma-induced activation is inhibited by cAMP-dependent protein kinase A (PKA). However, the details of regulatory mechanism of P-Rex1 remain to be clarified. In the present study, we investigated the mechanism of activation and inhibition of P-Rex1 using various truncated and alanine-substituted mutants and found that the domain-domain interaction of P-Rex1 is important for Gbetagamma-induced activation and PKA-induced inhibition. Immunoprecipitation analysis showed that the second Disheveled/EGL-10/Pleckstrin (DEP) and first PSD-95/Dlg/ZO-1 (PDZ) domains of P-Rex1 associate with the inositol polyphosphate-4-phosphatase (IP4P) domain. Carboxyl-terminal truncation on the IP4P domain or mutations in the protein-binding pocket of the first PDZ domain abolished the association. Analysis of in vitro guanine nucleotide exchange assay, PAK1/2 phosphorylation, and Rac-specific actin reorganization revealed that Gbetagamma could activate a complex of the P-Rex1 mutant lacking the IP4P domain and the isolated IP4P domain as well as full-length P-Rex1. Moreover, PKA phosphorylation prevented the domain-domain interaction and Gbetagamma-binding. These results provide a new insight into the regulation of other Rho-family GEFs and cell responses induced by the heterotrimeric G protein.  相似文献   
109.
In higher plants, male reproductive (pollen) development is known to be disrupted in a class of mitochondrial mutants termed cytoplasmic male sterility (CMS) mutants. Despite the increase in knowledge regarding CMS-encoding genes and their expression, definitive evidence that CMS-associated proteins actually cause pollen disruption is not yet available in most cases. Here we compare the translation products of mitochondria between the normal fertile cytoplasm and the male-sterile I-12CMS(3) cytoplasm derived from wild beets. The results show a unique 12 kDa polypeptide that is present in the I-12CMS(3) mitochondria but is not detectable among the translation products of normal mitochondria. We also found that a mitochondrial open reading frame (named orf129 ) was uniquely transcribed in I-12CMS(3) and is large enough to encode the novel 12 kDa polypeptide. Antibodies against a GST–ORF129 fusion protein were raised to establish that this 12 kDa polypeptide is the product of orf129. ORF129 was shown to accumulate in flower mitochondria as well as in root and leaf mitochondria. As for the CMS-associated protein (PCF protein) in petunia, ORF129 is primarily present in the matrix and is loosely associated with the inner mitochondrial membrane. The orf129 sequence was fused to a mitochondrial targeting pre-sequence, placed under the control of the Arabidopsis apetala3 promoter, and introduced into the tobacco nuclear genome. Transgenic expression of ORF129 resulted in male sterility, which provides clear supporting evidence that ORF129 is responsible for the male-sterile phenotype in sugar beet with wild beet cytoplasm.  相似文献   
110.
The diaphanous-related formins are actin nucleating and elongating factors. They are kept in an inactive state by an intramolecular interaction between the diaphanous inhibitory domain (DID) and the diaphanous-autoregulatory domain (DAD). It is considered that the dissociation of this autoinhibitory interaction upon binding of GTP-bound Rho to the GTPase binding domain next to DID induces exposure of the FH1-FH2 domains, which assemble actin filaments. Here, we isolated two diaphanous-related formins, mDia1 and Daam1, in platelet extracts by GTP-RhoA affinity column chromatography. We characterized them by a novel assay, where beads coated with the FH1-FH2-DAD domains of either mDia1 or Daam1 were incubated with platelet cytosol, and the assembled actin filaments were observed after staining with rhodamine-phalloidin. Both formins generated fluorescent filamentous structures on the beads. Quantification of the fluorescence intensity of the beads revealed that the initial velocity in the presence of mDia1 was more than 10 times faster than in the presence of Daam1. The actin assembly activities of both FH1-FH2-DADs were inhibited by adding cognate DID domains. GTP-RhoA, -RhoB, and -RhoC, but not GTP-Rac1 or -Cdc42, bound to both mDia1 and Daam1 and efficiently neutralized the inhibition by the DID domains. The association between RhoA and Daam1 was induced by thrombin stimulation in platelets, and RhoA-bound endogenous formins induced actin assembly, which was inhibited by the DID domains of Daam1 and mDia1. Thus, mDia1 and Daam1 are platelet actin assembly factors having distinct efficiencies, and they are directly regulated by Rho GTPases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号